

Pergamon

0040-4039(94)01848-0

Radical Cyclization of Bromomethyldimethylsilyl Propargyl Ethers; Synthesis of a Carbocyclic Core of Steroid Skeleton by a Tandem Radical Cyclization.

Sashuang Wu, Michel Journet and Max Malacria'

Université P. et M. Curie, Laboratoire de Chimie Organique de Synthèse, associé au CNRS, Tour 44-54, B.229, 4 Place Jussieu, 75252 Paris Cédex 05, France.

Abstract : *Homoallyl radical intermediaies. generated from the cyclisation of bromomethyidimethyrsilyl propurgyl ethers. have been trapped inmmolecuiariy by a double bond in a d-em-trig radical process. In rhat insmnce, a cmbocyclic core of steroid skeleton hzs &en synthesized (58%)* **in a one-pot operation via a cascade of** cylizations. Beside the 6-exo-trig radical process, an interesting 7-endo-trig one has been observed.

Radical cyclizations have rapidly become an important method in the field of organic synthesis.¹ Although the radical reaction forms generally only one bond, it could indeed he multiplied in complex molecular frameworks to give several bonds *via* tandem processes.2

With the radical cyclization of bromomethyldimethylsilyl propargyl ethers, the construction of functionalized unsaturated five-membered carbocycles is well established in our laboratory.3 In this case, two consecutive intramolecular cyclizations provide a homoallyl radical intermediate which can react in an intermolecular process leading to the stereocontrolled synthesis of a diquinane framework.4 In the course of this work, we became interested in the 6-exo-trig mode cyclization but our previous studies shown that the allylic hydrogen was subject to undergo a kinetically rapid and thermodynamically favorable (1.5) hydrogen atom transfer (Scheme 1).⁵ We surmounted this problem by the introduction of a quaternary center in the allyl

Scheme 1

position⁶ and it has been reported that another solution consisted of using an alkene acceptor bearing an activating group.7

We report herein another way to solve this problem: replacing the allylic hydrogen by a group not reactive throughout the cyclization. The preparation of the needed precursors was achieved straighforward using the palladium-catalyzed coupling reaction⁸ between an alkyne and an aryl or vinyl bromide⁹ as the key step and is outlined in the Scheme 2.

i) Pd(PPh₃)₂Cl₂,Et₃N, RBr; ii) pTsOH cat., MeOH; iii) (CH₃)₂CH₂BrSiCI, Et₃N, DMAP. Scheme 2

The cyclization¹⁰ of 4 gave, *via* a cascade of radical cyclizations, the tricyclic compound 6 as an unseparable 10/3 mixture of stereomers in 50% isolated yield as the major product of the reaction. The byproduct 7 (16%) nsulted from a final *7-endo-trig* mode cyclization, rarely observed, but easily explained by the generated stabilized benzylic radical (Scheme 3). The total diastereoselective formation of 7 was the result of a chairlike

Scheme 3

transition state during the cyclization of the vinyl radical and indicated that the mixture of sterecmers 6 was due to a lack of stereoselectivity during the 6-exo-trig radical process.^{5a,6}

Ether 5 provided **an even** more impressive example of this **sequence** which was successfully accomplished to afford, in a one-pot operation, a steroid skeleton 8 which was isolated in 58% yield with the same level of stereoselectivity as 6. Once again, the generated stabilized allylic radical in the 7-endo process may account **for the** fact that compound 9 was formed in 15% yield,

Finally, an interesting feature of the homoallyl radical intermediate, involved in the cyclization of 5, was the total chemoselectivity in favor of the 6-exo-trig radical process. Indeed, the reaction proceeded through the most stable rotamer (II) versus (I) in which a repulsion between the vinyl moiety and the silane heterocycle was present. Consequently, it is not surprising that the (1,5) hydrogen atom transfer did not compete with the cyclization (Scheme 4).

Scheme 4

In summary, we have developed a new route for enhancing the performance of the *6-exe-trig* radical cyclization processes. A very useful carbocyclic core of steroid skeleton 8 can be thus synthesized showing the potentiality of this tandem radical cydization. Further investigations planned to test its generality is in **course in our laboratory.**

Acknowledgements: The authors thank Roussel Udaf for a financial support.

References and Notes :

- (1) a) Motherwell, W. B.; Crich, D. *Free Radical Chain Reactions in Organic Synthesis*; Academic Press: New **York,** 1991. b) Giese, B. *Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds,* Pergamon Press: Oxford, 1986. c) Curran, D. P. *Synthesis* **1988. 417-439 and 489-513. d) Jasperse. C. P.; Curran, D. P.;** Fevig, T. L. Chem. *Rev.* **1991,91,** 1237-1286. e) Ramaiah, M. *Terruhedron 1987,43, 3541- 3676.*
- *(2)* For an excellent **review, see: Tietze, L. F.; Beifuss, U.** *Angew. Chem. Int.* **Ed.** *Engl.* **1993,32, 131-163.**
- (3) Journet, M.; Magnol, E.; Agnel, G.; Malacria, M. *Tetrahedron Lett.* 1990, 31, 4445-4448.
- *(4)* Joumet. M.; Smadja, W.; Malacria. M. *Synlett* **1990.** *320-321.*
- *(5)* a) Joumet, M.; **Malacria,** *M. J. Org. Gem.* **1992,57,** *30853093.* **b)** For (1.5) hydrogen **atom transfers,** see: Curran, D. P.; Shen, W. J. Am. Chem. Soc. 1993, 115, 6051-6059.
- *(6)* Joumet, **M.;** Laciite, E.; Malacria, **M.** *J. Chem. Sot., Chern. Commun.* 1994, 461-462.
- *(7)* For some successful 6-exo cyclizations, see: a) Beckwith, A. L. I.; Pigou, P. E. J. Chem. Sot., Chern. Commun. 1986, 85-86. b) Stork, G.; Krafft, M. E.; Biller, S. A. *Tetrahedron Lett. 1987.28, 1035 1038. c)* Hanessian, S.; Dhanoa, D. S.; Beaulieu, P. L. Can. J. *Chem.* **1987.65, 1859-1866.** d) Chuang, C.-P.; Galluci, J. C.; Hart, D. J.; Hoffman, C. *J. Org. Chem. 1988,53, 3218-3226.*
- *(8)* Tischler. A. N.; Lanza, T. J. *Tetruhedron Len.* 1986,27, 1653-1656.
- (9) The commercially available 2-bromostyrene was used for the preparation of 4 whereas the required bicyclic vinyl bromide was synthesized from b-tetralone: Gilchrist, T. L.; Summersell, R. J. *Tetrahedron Lett.* **1987,28,** 1469-1472.
- *(10)* **Typical procedure for the** cyclization of 4 and 5: A benzene solution (10 mL) of Bu3SnH (1.65 mmol) containing AIBN (0.15 mmol) was added by a syringe pump over a period of 8 h to a solution of 4 **or 5 (1.5** mmol) in refluxing **benzene (60 mL)** under argon. After completion of the addition, the mixture was allowed to reflux for 5 additional hours and cooled at 0° C. CH₃MgBr (4.5 mmol) was then added and the mixture was stirred for 30 min under argon. The organic phase was washed with brine and dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by column chromatography (silica). All the products were fully characterized; as an example, a description of 6 and 7 is given. 6 (major + minor): ¹H-NMR (400 MHz, CDCl₃) d 7.52-7.58 (m, 1H), 7.12-7.21 (m, 3H), 4.72 (t, J= 7.7 Hz, 1H), 2.90-2.98 (m, lH), 2.82-2.88 (m, 1H). 2.63 (dt, J= 12.4 and 6.7 Hz, lH), 2.15 (AB, J= 55.0 Hz. 2H). 1.85 (ddd, $J= 14.3$, 6.6 and 2.9 Hz, 1H), 1.68 (td, $J= 12.4$ and 5.6 Hz, 1H), 1.36 and 1.29 (d, $J= 7.1$ Hz, 3H), 1.21-1.27 (m, 1H), 0.18 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) d 143.3 (s), 142.6, 138.0 (s), 137.0, 133.5, 133.1 (s), 133.0, 132.3 (s), 130.1, 129.1 (d), 128.5, 126.6 (d), 126.5, 126.3 (d), 126.2, 125.5 (d), <u>80.5</u>, 79.8 (d), 42.2 , 42.0 , 41.2 (t), 38.5 (t), 36.7 (d), 34.1, 33.7 (d), 29.9, 24.0 (q), 21.9, 17.3 (t), 15.8, 0.04, 0.00 (q); IR (neat) 3420, 3060, 2940, 1600, 1550, 1500, 1440, 1240, 1030,740, 840 cm⁻¹; Anal. calcd. for C₁₈H₂₆OSi: C, 75.02; H, 9.09. Found: C, 75.13; H, 9.05. 7: ¹H-NMR (400) MHz, CDC13) d 7.08-7.20 (m, 4H), 4.85 (t, J= 7.5 Hz, 1H). 2.43-2.73 *(m,* 3H), 2.03-2.15 (m, lH), 1.83-1.93 (m, 1H), 1.77 (AB, $J = 65.0$ Hz, 2H), 1.18-1.45 (m, 4H), -0.11 (s, 9H); ¹³C-NMR (100 MHz, CDC13) d 143.0 (s), 142.2 (s), 139.9 (s), 138.8 (s), 130.2 (d), 129.9 (d), 127.4 (d), 126.6 (d), 80.1 (d), 46.9 (d), 43.7 (t). 41.3 (t), 38.2 (t), 28.7 (t), 16.5 (t), 0.0 (q); IR (neat) 3420, 3060, 2940. 1600, 1550, 1500, 1440, 1240, 1030, 740, 840 cm⁻¹; Anal. calcd. for C₁₈H₂₆OSi: C, 75.02; H, 9.09. Found: C, 74.95; H, 9.02.

(Received in France 29 *July* 19%; *accepted* 15 *September* 1994)